Învățarea cu eșantioane adversariale pentru imagini satelitare multispectrale / Learning with adversarial samples for Earth observation multi-spectral images
Omid GHOZATLOU
Data și ora: 2024-01-10 11:00
Locația: ETTI, Sala consiliu și Microsoft Teams
Rezumat teză de doctorat: Accesează
Data și ora: 2024-01-10 11:00
Locația: ETTI, Sala consiliu și Microsoft Teams
Rezumat teză de doctorat: Accesează
Thanks to the impressive computational capabilities of deep learning (DL), it offers numerous advantages and delivers outstanding results in the realm of earth observation (EO) image processing. Given the intricate nature and high dimensionality of remote sensing (RS) images, attempting to analyze this data without the aid of DL becomes an insurmountable challenge. Nonetheless, leveraging DL for EO images comes with its fair share of challenges. This study proposes novel solutions for mitigating the adversarial sample issue in RS image classification. Four strategies are introduced: Active Learning, Query-by- Example, Physics-aware deep models, and Synthetic data via Generative Adversarial Networks (GANs). Active Learning strategically selects informative samples to enhance the model’s performance. This approach allows the model to learn from data that it is uncertain about, thus improving decision-making. Query-by-Example aims to find the most similar image to a given query and optimize the network’s weights to separate adversarial samples from the query image in the latent space. This approach results in the model focusing on normal samples while identifying adversarial ones as outliers. Another noteworthy approach gaining popularity in RS research is Physics- aware deep models. These models incorporate the physical properties of EO data, guiding deep neural networks to better cluster and understand the data. By leveraging physical knowledge during the learning process, the model becomes more trustworthy and resilient against adversarial attacks. The final approach involves the use of GANs for generating synthetic satellite images to make the classifier robust against adversarial. GANs address the adversarial issue by training two sub-models in an adversarial learning framework.
Conducător de doctorat
Prof. dr. ing. Mihai DATCU, Universitatea Națională de Știință și Tehnologie Politehnica București, România.
Comisie de doctorat
Prof. dr. ing. Gheorghe BREZEANU, Universitatea Națională de Știință și Tehnologie Politehnica București, România
Prof. dr. ing. Cosmin ANCUȚI, Universitatea Politehnica din Timișoara, România
SR dr. ing. Miguel HEREDIA CONDE, Universitatea din Siegen, Germania
Prof. dr. ing. Mihai CIUC, Universitatea Națională de Știință și Tehnologie Politehnica București, România.
Prof. dr. ing. Cosmin ANCUȚI, Universitatea Politehnica din Timișoara, România
SR dr. ing. Miguel HEREDIA CONDE, Universitatea din Siegen, Germania
Prof. dr. ing. Mihai CIUC, Universitatea Națională de Știință și Tehnologie Politehnica București, România.
Comisie de îndrumare
Prof. dr. ing. Daniela COLȚUC, Universitatea Națională de Știință și Tehnologie Politehnica București, România
SR dr. ing. Miguel HEREDIA CONDE, Universitatea din Siegen, Germania
Ș.l. dr. ing. Corina VĂDUVA, Universitatea Națională de Știință și Tehnologie Politehnica București, România.
SR dr. ing. Miguel HEREDIA CONDE, Universitatea din Siegen, Germania
Ș.l. dr. ing. Corina VĂDUVA, Universitatea Națională de Știință și Tehnologie Politehnica București, România.
Info: Teza poate fi consultată la Biblioteca Universității Politehnica din București, situată în Splaiul Independenței nr. 313.